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Abstract 
Quasi-static tests have been performed on triaxially braided carbon fiber composite materials with 

large unit cell sizes. The effects of different fibers and matrix materials on the failure mode were 
investigated. Simulations of the tests have been performed using the transient dynamic finite element 
code, LS–DYNA. However, the wide range of failure modes observed for the triaxial braided carbon  
fiber composites during tests could not be simulated using composite material models currently available 
within LS–DYNA. A macroscopic approach has been developed that provides better simulation of the 
material response in these materials. This approach uses full-field optical measurement techniques to 
measure local failures during quasi-static testing. Information from these experiments is then used along 
with the current material models available in LS–DYNA to simulate the influence of the braided 
architecture on the failure process. This method uses two-dimensional shell elements with integration 
points through the thickness of the elements to represent the different layers of braid along with a new 
analytical method for the import of material stiffness and failure data directly. The present method is 
being used to examine the effect of material properties on the failure process. The experimental 
approaches used to obtain the required data will be described, and preliminary results of the numerical 
analysis will be presented. 

Introduction 
The analysis of laminated composite materials within a finite element code requires the input of 

unidirectional engineering properties of the composite lamina such as Young’s modulus and Poisson’s 
ratio in various coordinate directions. The fiber orientations of each of the plies in the laminate are 
provided, and Classical Laminated Plate Theory (CLPT) (ref. 1) is then applied within the finite element 
code to compute the effective laminate stiffness and deformation response of the composite based on the 
ply material data and fiber orientations. The unidirectional properties of the composite ply can be 
measured from testing and input directly into the code, or computed based on fiber and matrix 
constitutive properties using micromechanics methods such as the Rule of Mixtures, the Concentric 
Cylinders Model (ref. 1), or other techniques. The composite structure is then modeled in most cases 
using two-dimensional shell elements and in some cases by three-dimensional brick elements.  

However, while CLPT works well for traditional unidirectional laminated composites, it cannot be 
directly used with braided or woven composites because the fibers are interwoven, and a clear distinction 
cannot be made between each of the individual layers. There has been research to refine traditional CLPT 
equations to account for the complex braid architecture in woven or braided composites, and an overview 
of these methods is shown in reference 2; however this topic is still an area of research.  

Numerous approaches for modeling composites having nontraditional layers have been developed, 
and some examples are discussed here. Dano et al. (ref. 3) modeled two-dimensional triaxial braided 
composite static tensile coupons using beam elements for the carbon fiber and shell elements as the 
polymer matrix material. Masters et al. (ref. 4) performed extensive testing on triaxial braided composites 
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and developed two finite element techniques to calculate the stiffness of the composite. The first of these 
models was called the “diagonal brick model,” which used a brick of resin as the outlining element with 
bar elements representing the carbon fiber braid.  

Similar methods have been developed specifically for woven composites. Donadon et al. (ref. 5) 
developed a three-dimensional constitutive model based on CLPT for woven laminates, and Huang 
(ref. 6) developed a “bridging model” for woven composites based on undulations and composite 
geometry. An approach developed by Ishikawa and Chow (ref. 7) called the “mosaic model” simulated a 
woven composite by breaking up a unit cell into squares of unidirectional lamina. In this model, laminate 
properties are found by assembling the unidirectional lamina through application of CLPT. Tabiei and 
Tanov (ref. 8) have developed a “four cell model” for plain weave composites, which breaks down the 
unit cell into subcells and develops equations that include the fiber undulation angles. 

The approach that has been developed in this paper entails development of a macromechanical model 
capable of being used in large composite structures. The approach uses methods based on traditional 
CLPT to analyze the braided composite at the macromechanical level. The equivalent unidirectional ply 
properties of the composite required for the analysis are obtained by utilizing results from tests on the 
braided composite. Because the model approximates the braid architecture while also incorporating many 
of the failure properties of the composite, it accounts for elements of the composite microstructure but 
only requires the smaller computation time of a macromechanical approach. Finally, the model can be 
easily modified to account for changes in the braid angle, number of layers, or materials. 

Material Background 
A high-strength, standard-modulus fiber (T700S, Toray Industries, Inc.) was used along with a 

toughened resin (CYCOM PR520, Cytec Industries, Inc.) for this study. The composite material system 
was fabricated into 2-ft by 2-ft by 0.125-in. composite panels in an enclosed resin transfer molding 
(RTM) mold by North Coast Composites using braided preforms from A&P Technology. The preform 
architecture was [0°/60°/–60°] with 24k tows (“24k” is a designation of the number of fiber filaments in a 
fiber tow) in the axial (0°) direction and 12k tows in the bias (60° and –60°) directions. The number of 
24k tows in the axial direction was half that of the 12k tows in the bias directions, so the total fiber 
volume in each direction was the same. As a result the composite is expected to be quasi-isotropic. The 
preform was supplied in the form of a braided tube. Three layers of the tube (six total plies) were excised, 
placed in the RTM mold with 0° (axial) fibers aligned, injected with resin, and cured under conditions 
specified by the resin manufacturer. The nominal fiber volume was calculated to be 56 percent, and the 
actual fiber volume was measured by the acid digestion technique on samples from a representative panel 
for each material system. The fiber volume of the composite panel was measured to be 55.9±0.18 percent. 
Figure 1 shows an example of the braided material and the size of a unit cell. The unit cell is the smallest 
repeating volume of the composite where the behavior can be considered to be representative of the 
composite as a whole. For the analyses conducted in this study, a single unit cell is also divided into four 
subcells.  

Figure 1, left, shows the fiber orientation in a braided preform before molding. Figure 1, upper right, 
shows a magnification of one unit cell for one layer of braid of the composite. Figure 1, middle right, 
shows a top view of the three-dimensional model of the braid architecture, and figure 1, lower right, 
shows a side view of the braid architecture with the subcells identified Each subcell is simulated as an 
equivalent laminated composite. Note that due to the braiding scheme present, the fiber layup is different 
in each of the subcells. As shown by the subcell illustrations in figure 1, middle right, subcell A has a  
–60° fiber on top (represented in green), a 0° fiber in the middle (represented by blue), and a 60° fiber on 
the bottom (represented by red) in each layer. Similarly, subcell B is shown to have only a –60° fiber over 
a 60° fiber, and subcell C has a 60° fiber over a 0° fiber on top of a –60° fiber. Finally, subcell D has a 
60° fiber over a –60° fiber. Therefore, the braid architecture is simulated by the process of dividing up the 
unit cell into subcells and approximating each subcell as a laminated composite. The unit cell with subcell 
geometries as defined here will be the basis for the modeling technique. 
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Figure 1 shows the architecture of a single layer of braid in a unit cell. The actual composite panels 
have six layers of braid (with each layer of braid having multiple layers of fiber tows). Photomicrographs 
were taken to determine the amount of fiber shifting, or the relative position of the unit cells through the 
specimen thickness, present in the actual composite panel. Fiber shifting was examined because if it was 
assumed that all of the subcells would be in the same relative position throughout the thickness, then 
subcells B and D would be overly weak due to the lack of 0° fibers in these subcells. Also, shifting was 
included to account for the assumption of quasi-isotropy, in that each of the subcells would have 0°, –60°, 
and 60° fibers.  

Figure 2 shows a side view cross-section photomicrograph of an actual composite panel. The dark 
areas represent the cross sections of the axial fiber bundles, as they are orientated perpendicular to the 
page, while the white areas represent bias fiber bundles, which are orientated at 30° to the cross-sectional 
cut. The small areas of grey between the fiber bundles represent resin rich pockets. Subcell designations 
shown in the figure were picked to represent the subcells for the top layer of braid. Subsequent layers are 
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shown to have misalignments under the topmost layer, where for example one 0° fiber tow is found 
directly under another 0° fiber tow. These relative changes in position for subsequent layers through the 
thickness suggest that subcell shifting is prevalent enough such that it needs to be accounted for in the 
analytical model. Subcell shifting will be accounted for in an idealized way when modeling the braid 
geometry. The analysis method will shift the relative location of a unit cell by one subcell for each of the 
layers through the thickness of the composite.  

Finite Element Model Development 
The commercial transient dynamic finite element code, LS–DYNA (ref. 9), was used to analyze the 

triaxial braided composites discussed in this paper. The LS–DYNA code was used because of its 
applicability to impact simulations, which will be the ultimate goal of this effort and discussed in a future 
paper. 

Both the triaxial braid geometry and the material properties obtained through testing will be 
incorporated into the model. First, the composite test techniques will be briefly described. Next, the 
methods for including the composite braid architecture will be discussed, and finally, the methods 
developed for obtaining the equivalent unidirectional ply properties required for the finite element model 
from the test data will be presented. 

Experimental Results 

Tensile, compressive, and shear testing was completed for the T700S fiber/PR520 resin triaxial 
braided composite material system under consideration, and a full description of the test method can be 
found in reference 10. Optical measurement techniques were used to capture the full-field surface strain 
on the composite test specimens. By examining the full-field data, representative material property data 
for the composite such as effective stress-strain curves were obtained; however, the optical measurement 
techniques allowed for greater insight into local failure mechanisms occurring in individual fiber bundles 
or specific layers. One main advantage of this approach is that the optical measurement techniques were 
also able to capture individual subcell axial and transverse strains on the surface of the specimen, which 
allowed for the utilization of the strain data in the material model (described later). Figure 3 shows 
example results obtained from the optical measurement system, with subcell strains highlighted. 

Development of Braid Geometry  

The idealized geometry to be represented in the computer finite element model is shown in figure 4. 
The model developed in this report is an extension of techniques first developed by Cheng (ref. 11), 
which are being modified because reference 11 failed to include the fiber shifting phenomena observed 
and described in the previous section.  

In the LS–DYNA model, each subcell is modeled as a discrete entity, called a Part (*PART_...). Each Part 
has its own corresponding Section (*SECTION_...), which will define the braid geometry, and Material 
(*MAT_...), which will incorporate the equivalent unidirectional ply properties obtained from the test data. All 
subcells were modeled as shell elements (*SECTION_SHELL) since the length and width of the composite 
structures being examined are much greater than the thickness. Each section card contains properties such as 
element thickness, which represents the thickness of the composite specimen; number of integration layers, 
which defines the number of fiber layers through the cross section; and integration layer orientation, which 
describes the angle of the fiber at each particular layer. Thus, the section card in each of the subcells includes 
15 integration points that represent the 15 layers of fibers through the thickness of the composite. Finally, 
separate integration cards (*INTEGRATION_...) were used for each subcell. This card is called out by the 
individual subcell section cards and includes parameters such as individual fiber layer position through the 
thickness of the section and relative weights for each layer. To simplify the development of the material model, 
the analysis method assumes each of the 15 fiber layers have the same thickness; thus all of the fiber layers are  
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spaced equally throughout the thickness. To account for the differences in sizes between the 24k axial and 12k 
bias fiber bundles, the axial layers were weighted twice the amount of the bias layers.  

As an example, subcell A (fig. 4) would be modeled as part no. 1, which has a corresponding section 
no. 1. Section no. 1’s integration layers will reflect the braid geometry seen in figure 4. Going from 
bottom to top in subcell A, the orientation of the fibers are as follows: –60°, 60°, 60°, 0°, –60°, –60°, 60°, 
–60°, 0°, 60°, –60°, 60°, 60°, 0°, –60°. All layers would be equally spaced, and the normalized weights on 
the axial (0°) fibers would be double that of the bias (60°) layers. 

Development of Material Property Values  

The material model within LS-DYNA that was employed for all of the subcells is a continuum 
damage mechanics-based orthotropic material model based on a model developed by Matzenmiller et al. 
(ref. 12). This model is known as *MAT_LAMINATED_COMPOSITE_FABRIC (Material 58) within  
LS–DYNA. For the elastic portion of the analysis, which will be described first, the effective  
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unidirectional ply properties, the longitudinal Young’s modulus E11, transverse Young’s modulus E22, 
transverse Poisson’s ratio v21, and axial shear modulus G12, need to be entered as part of the model input. 

The methods for obtaining the effective unidirectional ply level properties (E11, E22, v21, G12) that are 
needed for each integration layer in each of the subcells are developed in this section. The key feature of 
this approach is that the required properties can be backed out from coupon-level test data obtained for 
the braided composite. As part of this process, the analysis method developed was done in parallel with 
testing done by Littell et al. (ref. 10). Thus, many of the specimen geometries and boundary conditions 
utilized for model development are the same as those used in the composite testing. The first step in the 
model development process involves examining results from a transverse tensile test, in which the 
specimen geometry was taken from the ASTM D–3039 (ref. 13) standard. In this test, the axial (0°) fibers 
are oriented perpendicular to the applied load, Px, as shown in figure 5. To represent the transverse tensile 
test in the model, the four subcells of the unit cell are orientated parallel to the direction of the load, also 
shown in figure 5. 
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By first assuming that all six layers of braid in the specimen carry the same load, the total load is first 
divided by the number of layers in the composite. Next, it is assumed that all of the unit cells along the 
width of the specimen carry the same load, so the applied load is divided by the number of unit cells 
along the width, which gives the total load for each unit cell. By applying this approach the model is 
developed for the unit cell as shown in figure 1 and is not developed for the shifted geometry as shown in 
figure 3. A point to note is that the axial load Nx is taken to be per unit length so it is also divided by the 
width of each unit cell.  
 

 ( )widthcellsunit # layers# ∗∗= xx
PN  (1) 

 
The next step is to partition the load Nx among each of the subcells in the unit cell. For this process, 

and for the methods described in the remainder in this section, uniform stress (or load) and uniform strain 
assumptions that have been applied in micromechanics methods in the past (ref. 14) need to be applied 
between the subcells. For example, the load Nx can be assumed to be equal in all of the subcells 
 
 D
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The subscript x represents the direction of loading (see fig. 5) and the superscript represents the 

subcell name. Next, the volume average of the load in the y-direction, Ny, in each of the subcells is 
assumed to be equal to 0 since there is no applied load in that direction.  
  (3) 

( ) ( ) ( ) ( ) 0**** =+++ D
y

D
f

C
y

C
f

B
y

B
f

A
y

A
f NVNVNVNV  

 
Vf represents the volume fraction of each subcell compared with the volume of the entire unit cell, and 

not the fiber volume fraction of the as-fabricated composite. Note that because subcell C will have the 
same volume fraction as subcell A and subcell D will have the same volume fraction as subcell B, 
equation (3) can be rewritten. 
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Next, CLPT is used to relate Nx and Ny in each subcell to the to the strains ε in the subcell. Although 

on a local level the laminate orientations in each subcell are not symmetric, on a global level the 
composite can be assumed to be symmetric, so the assumption is made that the B constitutive matrix 
normally associated with CLPT can be set equal to zero. Furthermore, on the local level only the in-plane 
strains are considered, not any moments, so the D matrix normally associated with CLPT is also assumed 
to be zero. The laminate orientations can be assumed to be balanced, so the A16 and A26 components of 
the A matrix from CLPT are set equal to zero. To summarize, in-plane normal loads are assumed to be a 
function of in-plane normal strains, and shear loads are assumed to be a function of shear strains. 
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In equation (5), the superscript A represents the subcell name. The equation has the same form for 
subcells B, C, and D. The matrix equation shown in equation (5) above can be expanded to give 
equations (6) and (7) for subcell A and equations (8) and (9) for subcell B. 
 
 ( ) ( )AyAA

xAA
x AAN ε+ε= *12*11  (6) 

 
 ( ) ( )AyAA

xAA
y AAN ε+ε= *22*12  (7) 

 
 ( ) ( )ByBB

xBB
x AAN ε+ε= *12*11  (8) 

 
 ( ) ( )ByBB

xBB
y AAN ε+ε= *22*12  (9) 

 
Noting that subcells A and C will both have the same layers of 0° fibers, layers of 60° fibers and 

layers of –60° fibers, only subcell A will be examined. Similarly, since subcells B and D will have the 
same number of 60° and –60° layers, only subcell B will be examined. 

The A matrix from CLPT can be computed in the usual manner: 
 
 ∑=

k
kijij tQA *  (10) 

 
In equation (10), t is the thickness of the kth layer. The Aij matrix can be specifically written for 

subcells A and B. 
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In equations (11) and (12), the ijQ  terms are the transformed stiffness terms for a unidirectional ply 

in the structural axis system. Note that a ijQ  term for the 0° fiber is not present in subcell B because 0° 

fibers are not present in this subcell. The ijQ  terms can now be decomposed into their representative Q 
terms, which represent the stiffnesses for a unidirectional ply in the material axis system in the axial, 
transverse, and shear directions. In general,  
 
 66221222224114
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In equation (13), m is the cosine of the braid angle and n is the sine of the braid angle. Thus 
equation (13) can be substituted into equations (11) and (12) noting that the values for m and n will 
change for the different bias directions.  

There are now six unknowns in the equations derived above—Q11, Q12, Q22, Q66, Nya, Nyb—and only 
five equations—equations (4) and (6) to (9). An advantage to using an optical measurement system is that 
it allows for the strains in both the axial and transverse directions to be directly measured for each of the 
subcells and used directly in equations (6) to (9).  

However, the system needs another equation to be solvable. This equation will be found from the 
modeling of an axial tensile test using the same ASTM 3039 specimen geometries as applied previously. 
In axial testing, although the technique is the same for developing the equations, the assumptions are not 
the same. Figure 6 shows a representation of an axial tensile test, which was the basis for the axial 
constitutive equation development. In an axial tension test, the axial (0°) fibers are oriented to the 
direction of loading. This is represented by orienting the four subcells perpendicular to the direction  
of loading. 

An important point to note for the discussion that follows is that the composite is once again assumed 
to be loaded in the “x-direction.” That means that in terms of the unit cell orientation, the axis orientation 
is switched 90° from the transverse loading case. In other words, what was considered to be the  
y-direction previously is now the x-direction, and vice versa. In axial tension testing, only one uniform 
stress assumption needs to be applied for the equation development here. Since the unit cell is being 
pulled in the x-direction, the effective force in the y-direction must be zero. The forces in the y-direction 
in each of the subcells are also assumed to be equal. This assumption can be expressed mathematically as 
follows: 
 
 0==== D

y
C
y

B
y

A
y NNNN  (14) 

 
The CLPT equations based on equation (5) will be expressed for the y-direction only for the case of 

an axial tension test. Note that the Aij terms are not the same as they were for the transverse tension 
testing, as the angles for m and n have changed by 90° because the orientation of the unit cell has changed 
by 90°. 
 
 A

yAA
xAA

y AAN ε+ε== *22*120  (15) 
 
 B

yBB
xBB

y AAN ε+ε== *22*120  (16) 
 

By taking into account the 90° change in angle in the Aij terms, there are now seven equations 
(eqs. (4), (6) to (9), (15), and (16)) and only six variables (Q11, Q12, Q22, Q66, and Nya , Nyb for the 
transverse tensile test). Now 6 out of the seven equations can be used for the solution, and the seventh 
equation can be used for verification.  
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Since the ultimate goal is to find the equivalent unidirectional ply level properties required for the 
material model, the Q terms need to be decomposed in terms of engineering constants. They can be 
decomposed as follows: 
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In equations (17) to (20), the variables E11, E22, G12, v12 (axial Poisson’s ratio) and v21 are unknown. 
Again, there are more unknowns than equations. The final equation comes from elasticity theory: 

 

 
21

22

12

11
v
E

v
E

=  (21) 

 
Knowing the Qij from above and using equations (17) to (21), E11, E22, G12, v12, and v21 can be found. 

These values are effective unidirectional engineering properties of the composite ply at each integration 
point in the finite element model. 

Development of Failure Parameters 

Ply level material properties are one portion of the input requirements for Material 58 in LS–DYNA. 
The other input requirement is the initial ply level unidirectional failure strengths for the composite. The 
initial failure criteria implemented within Material 58 are based on the Hashin (ref. 15) failure criteria and 
have the parameters specified in table 1 as input. 

 
TABLE 1.—FAILURE VALUES NEEDED FOR  

FINITE ELEMENT MATERIAL MODEL 
Parameter Description 

E11T Strain at longitudinal tensile strength 
E11C Strain at longitudinal compressive strength 
E22T Strain at transverse tensile strength 
E22C Strain at transverse compressive strength 
GMS Strain at in-plane shear strength 
XT Longitudinal tensile strength 
XC Longitudinal compressive strength 
YT Transverse tensile strength 
YC Transverse compressive strength 
SC Shear strength 

 
Failure values required for the finite element material model were determined based on the composite 

test data. Preliminary observations were made on the full-field strain data from the various axial and 
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transverse tensile and compressive tests that were conducted. The easiest parameters to observe are the 
axial tensile values. The axial fibers are assumed to carry the majority of the load during an axial tensile 
test. As a result, the assumption was made that in this test is the braided composite is effectively acting as 
a unidirectional laminated composite, and therefore the axial tensile strength obtained during the test 
could be extrapolated to be the axial tensile strength of the equivalent unidirectional layer. The value 
E11T can be found by observing the strain in an axial tensile specimen at failure, and XT can be found  
by recording the ultimate tensile strength that occurs at the ultimate strain. Figure 7 shows a 
representative example of the stress-strain curve obtained from an axial tension test, along with the 
extrapolated failure values. 

In compression, the full-field strain data shows that the composite behaves as homogenous material. 
Unlike in tensile tests, there are no areas of high and low strain, but rather a uniform strain field is present 
in the composite. Knowing this, E11C can be found by observing the strain in an axial compression 
specimen at failure. The XC can be found by recording the ultimate compressive strength that occurs at 
the ultimate compressive strain. Figure 8, left, shows the uniform strain field present in an axial 
compression specimen, as measured by the optical measurement system, and figure 8, right, shows the 
effective stress-strain curve, along with the extrapolated failure values. 
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Similarly, for compression in the transverse direction, the composite also acts as a homogenous 
material. Both YC and E22C can be obtained from the material response in a transverse compression test. 
Figure 9, left, shows the uniform strain field present in a transverse compression specimen, and figure 9, 
right, shows the stress-strain response from a transverse compression test. 

Finding the tensile transverse failure values is not as straightforward. Since the failure strength input 
that is required is that of a unidirectional composite, the required transverse tensile strengths cannot be 
directly inferred by looking at the composite coupon stress-strain data because of the fact that the bias 
fibers significantly contribute to the composite failure strength. Instead a different approach was used to 
extrapolate the required values. By using the full-field strain measurement technique, the failure stress 
where the transverse fiber bundle split appears can be determined. This value is assumed to be YT. A 
detailed explanation on fiber bundle splitting can be found in reference 10. The fiber bundle split can be 
assumed to represent a transverse failure in each layer in the composite. However, the composite will fail 
once the overall composite material response reaches its failure strain, E22T. Between the onset of the 
splitting in the individual fiber bundles (YT) and specimen failure (E22T), damage is accumulating in the 
composite, which is demonstrated by the nonlinearities in the overall specimen stress-strain curve. As 
individual fiber bundles reach their failure stress and split, they cannot carry anymore load, and the load is 
distributed to the other fiber bundles. As the remaining fiber bundles begin to carry the extra load from 
the failed bundles, they, in turn, begin failing. When the number of fiber bundle failures reaches a critical 
value, the composite specimen will then fail.  

The transverse failure caused by the fiber bundle splitting is represented in the model by setting the 
transverse tensile stress limiting parameter (SLIMT2) equal to 1. Setting this parameter to 1 makes each 
individual layer for each of the subcells in the model behave in a simulated elastic-perfectly plastic 
manner in the transverse direction. In the elastic region, the fiber bundles are carrying load until they 
reach their ultimate stress value (YT). They then go into the plastic region. The plastic region represents 
the region in which each layer cannot carry any more load and simulates the loading on the layer after a 
fiber bundle split occurs in the composite test. It allows for the overall composite specimen to still carry 
load, even though individual fiber bundles cannot. This means that even though some of the individual 
fiber bundles will have failed, the overall specimen stress versus strain material response will continue to 
grow. In the transverse direction, the material response for a single layer would be as shown in figure 10. 
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Figure 11 shows the full-field strain measurement on a representative transverse tensile coupon and 
the local fiber bundle strain versus global coupon stress response obtained from a transverse tensile test, 
where the location of the first fiber bundle split is identified in the figure. 

The value of E22T used in the analysis will be the strain at which the composite specimen fails. The 
value for E22T is taken from the overall composite stress-strain response. The overall composite 
transverse tensile stress versus strain response is shown in figure 12. 

Shear strength parameters were found using the results from shear tests conducted according to 
ASTM D 5379 (ref. 14). Figure 13 shows the orientation of the unit cell under shear loading. 

As figure 13 shows, each of the unit cells will take the same shear stress. If the thicknesses in each 
layer are assumed to be the same, then each layer for each unit cell will also take the same shear stress. 
Knowing this, the shear strength data measured from the test can be assumed to be equal to the equivalent 
unidirectional values. A representative shear stress versus strain response is shown in figure 14. 
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Finite Element Model Implementation 
Two finite element models were created in LS–DYNA, one simulating an axial tensile test and the 

other simulating a transverse tensile test. Both geometries were based on ASTM 3039 geometries. 
Figure 15 shows the geometries. 

Axial and transverse tensile tests were simulated in LS–DYNA, and the effective stress versus strain 
material response plots were output for each test. The stress-strain plots for the LS–DYNA simulations 
were compared against stress-strain curves obtained from the tests. Figure 16 shows the axial tension 
stress-strain curve obtained from a representative test and the equivalent stress-strain curve obtained from 
an LS–DYNA simulation. 

The preliminary comparisons between a sample axial test and LS–DYNA simulations show fairly 
good agreement. Table 2 compares the results between the LS–DYNA simulation and average test results. 
Note the numbers for the test data represent the average and one standard deviation for five tests.  

 
 

TABLE 2.—COMPARISONS BETWEEN TEST AND  
LS–DYNA AXIAL TENSION DATA 

 Axial tension 
modulus, 

psi 

Axial tension 
strength, 

psi 
Test 6.8×106±1.6×105 1.52×105±4.9×103 
LS–DYNA 7.4×106 1.31×105 
Error, percent 7 12 

 
 
 
 

 
 
 



NASA/TM—2008-215245 16

 
 
 
 
The axial test results showed that the material modulus for the simulation agrees fairly well with the 

material modulus for the test; however, the strength obtained with the simulation is low compared with 
the test data. One reason for this discrepancy is that the value chosen for axial strength (XT) was from a 
statistical outlier generated from testing. Another reason is that the material used in LS–DYNA is 
represented by a continuum damage model. This means that damage could be occurring in the axial 
layers, leading to a reduced strength in these layers that does not actually occur in the test. Also, 
interactions between each layer could be causing localized stress concentrations in the LS–DYNA model 
that may not be present in the test. However, the model does show agreement with the test in that both 
response curves show linear behavior until failure. 

Figure 17 shows transverse tensile stress-strain curves for a representative test and for an LS–-DYNA 
simulation. The transverse results also show fairly good agreement between the test results and the 
simulation. Table 3 shows the comparisons. 

 
 
 

TABLE 3.—COMPARISONS BETWEEN TEST AND  
LS–DYNA TRANSVERSE TENSION DATA 
 Transverse tension 

modulus, 
psi 

Transverse  
tension strength, 

psi 
Test 6.2×106±2.3×105 8.69×104±4.3×102 
LS–DYNA 5.6×106 9.38×104 
Error, percent 9 8 

 
 
The simulations capture the nonlinearities usually encountered with transverse testing due to damage 

accumulation in the composite. However, the strength values for the simulation were higher than the test. 
This could be due in part to the value picked for the transverse strength of the fiber bundle split. More 
detailed investigations are needed to determine if the first fiber bundle split should be used for the 
analysis, or a median value of stress based on the number of fiber bundle splits should be used.  
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Conclusions 
A modeling technique has been developed for two-dimensional triaxial braided composites that 

characterizes the material response. This method uses a braided through the thickness integration 
approach to account for the fiber angles within a single unit cell and utilizes test data acquired from a full-
field optical measurement system. The method combines assumptions from Classical Laminated Plate 
Theory and techniques derived from composite micromechanics approaches to create a method in which 
uniaxial ply level material properties entered into the finite element models come directly from measured 
test data on two-dimensional triaxial braids.  

Further work can be done to examine the material response of two-dimensional triaxial braided 
composite materials under compression and shear loading. Appropriate finite element models, including 
proper boundary conditions, need to be developed for these simulations to be conducted.  
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